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ABSTRACT

We consider a finite one-dimensional elastic body with stored-energy
function of the form W(y) + EZ(Y')Z, where Y 1is the strain, Y' the
strain gradient, and € a small parameter. We assume that W(Y) is non-
convex, of the type capable of supporting two-phases. We show that when the

body is acted on by end loads the only stable strain fields are the single-

phase solutions Y = constant.
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SIGNIFICANCE AND EXPLANATION

. ef,'r':"dn sué 36&,»"‘.&')5!-5&
\‘5 vné, Gvfkarr
¢ consider a one-dimensional ;elastic bar acted on by end loads. To

. bpzy
allow for the possibility of phage transitions u;/consider a stored—-energy

I 2 _ L Y .
function of the form W(Y) *({/(Y") ~ with w(;h a nonconvex function of
& r A )

strain’ /', a function of the type capable of supporting two-phases. The term

~
3 e

involving the strain gradient’ Y' is added to model the region of rapidly

varying at’rain in the vicinity of a phase transition. SPK,/M
7 .3
We- -hownthat this problem has smooth solutions which, for £ small,

correspond to the single-phase and two-phase solutions of the problem with

Crf,/;::\ 7. -

¢ = 0. /We showfurther that the only stable solutions of this problem are the

single-phase solutions Y = constant.
. .

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




ONE-DIMENSIONAL STRUCTURED PHASE TRANSFORMATIONS
UNDER PRESCRIBED LOADS

Jack Carr, Morton E. Gurtin, and Marshall Slemrod

1. Introduction

Consider a bounded one-dimensional body identified with the interval

[0,L]. We assume that the body is elastic with stored energy W(Y) a C2

function of strain1 Y, 0 <Y <=, and with stress
aw(y)
g -
{v) ay

of the form shown in Figure 1. Thus

L ]
g* >0 on (0,Yy ), o' <0
G(Y) *
on (v ,Y,), and o' > 0

on (Y,,”). Let
U’ * *
o, =0oly,), 0 =a(y ).

*
Then for £ € (o,,0 )
there are exactly three

values of Y for which

! og(y) = £ .

7 alf) v xlf) Y B(£) Y  We denote these by
Figure 1. The stress-strain law. a(f) < A(f) < B(f) ,
omitting the argument f when convenient, and we extend a(f) {respectively

*
B(£)} in the obvious manner for f € (0,0,] {respectively (o ,»)}.

1
If the underlying deformation u carries material points x e [0,L) to
points ui{x), then Yy = du/dx.

Sponsored by the United States Army under Contract No. DAAG29-80-~C-0041
(Gurtin, Slemrod) and supported in part by the United States Army under
Contract No. DAAG29-82-K-0002 (Gurtin), in part by the National Science
Poundation under Grant No. MCS-8102380 (Gurtin), and in part by the Air Force
Office of Scientific Research, Air Force Systems Command, USAF under
Contract/Grant No. AFOSR-81-0172 (Slemrod).
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We restrict our attention to loading applied by a soft devicez, so that
the load f (= constant) is prescribed. The problem of determining the stable
strain field resulting from this load consists in minimizing the corresponding
potential energy. This problem can be stated precisely as follows:

(3) Minimize
fg (W(y) - f£yldx (1.1)
over a1l y es'(o,1) with w(v) e1'(o,L).

This problem has been studied by Ericksen [1975], and we briefly record

some of his results. The Euler-Lagrange equation is

o(y) = £,
ot while the form of the
minimizer depends on
whether or not the
load £ 1is smaller than,

equal to, or larger than

the Maxwell stress

M’ where aH is the §

o]

unique value of stress

Figure 2. The Maxwell line. for which (Figure 2)

W(BH) - W(uu) = cM(BH-aH) ﬁ

a, = “‘“n)' BM - B(aH) .

The strains a

M and BH are the lower and upper Maxwell strains, 4

respectively. H

2
Cf. Ericksen [1975].
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Figure 3. The potential W(y) - fy .

As is clear from PFigure 1, the potential W(Y) - £y has the form shown
in FPigure 3. Por £ < o, the local minimum at B disappears, as does the

L ]
local minimum at a when £ > ¢ . Therefore for f °ll the solution to

Problem S is'
Y(x) = & when f<t1M ¢

Y(x) = 8 when £ > Oy °
FPor £ = %y the problem is far more interesting. Here any function of the

form
Y(x) = L for all xes ,
Y(x) = 8M for all x e [0,L]1\8 , (1.2)

s € (0,L], § measurable ,

is a minimizer.

We will use the following terminology: solutions of the form

Y(x) = constant

will be called single-phage solutions) solutions of the form (1.2) with 8

1

The energy (1.1) also has a local minimum relative to L‘(O,L) at a for

Oy < £ < 0* and one at B _for o, < f < 0O\ these constant functions are not
local minima relative to L (0,L).

~3-
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and [(0,LI\\8 nontrivial will be called two-phase solutions; in the latter

case, when both the number ny of nontrivial connected components of 8§ and
the number n, of nontrivial connected components of [0,L]\S are finite,
we will refer to n,+n,~1 as the degree of the solution.

Thus for f ¥ ou the solution is single~phase (and unique); for
£ = o, there are two single-phase solutions (Y = . ” and Y = BM) and an
uncountable infinity of two~phase solutions of each degree 3> 1.

Por the case f = oH it seems reasonable to ask whether any of the

solutions are preferred. One might expect that the single~phase solutions

are, in some sense, more stable than the two—phase solutions. We here show
that this expectation is indeed true prcvided we consider the present theory |

as an approximation to a higher-order theory which allows the strain-gradient

to enter the constitutive equation for the stored energy.
A general nonlinear theory of this type was apparently first given by

Toupin [1962] and is based on constitutive functions for the stored energy and

stress of the forms
w(Y,y') anda oa(y,v")

with

sty = & wrary
The presence of the strain-gradient Y' = dy/dx models situations in which the
strain varies rapidly; in this instance the force interactions within the
underlying crystal lattice cannot be adequately described by the usual notion ;
of stress and one needs - in addition to the (classical) stress o - a second- |

order stress U which, in the present theory, is related to W through

HIY,Y') = 5%— WYY .
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We here take the simplest possible generalization of our original theory

and write

WY, Y') = Wly) + e2(y")?

with W the original stored energy and € a "small” constant (> 0). The
stress O is then independent of Y' and is given by

o{y) = %ﬂ '
while the second-order stress obeys the simple relation

ply'y = 2¢%y .

Within this framework our problem has the following form:
(Se) Minimize
I:‘ W(y) - £y + 2y lax (1.3}

over the class of absolutely continuous functions Yy on [o,n).

The Euler-Lagrange equation for this problem is

2ezy' =g(y) - £ , (1.4)

while the natural boundary conditions have the form

Y'(0) =y'(LYy =0 , (1.5)

or equivalently, u(y') =0 at x = 0,L.

The boundary conditions (1.5) seem reasonable. Indeed, our wish is to

focus on the region of rapidly varying strain that occurs in the vicinity of a

phase transition, and it is there that the higher-order stress u should play

an important role. Away from the phase transition we expect the classical

1
Energy functionals of this type originate in the classic paper of van der

Waals (1893]. Cahn and Hilliard [1958) independently rederived van der Waals'
basic theory, and in the last twenty five years gradient theories have become
a popular tool in analyzing phase transitions and other physical phenomena.
(Cf. Rowlinson'’s [1979] translation of van der Waal ([1893) for a list of

selected references.)




theory to apply, and for that reason the boundary conditions (1.5) seem

appropriate. [Of course, one might expect it to be difficult if not
impossible to achieve this form of boundary condition in practice.)

It is clear that if a single-phase solution Y minimizes the original
functional (1.1), Y trivially minimizes (1.3), as Y'S 0. Thus the complete

list of solutions of Problem Se consists of the single-phase solutions

Y(x) £ a for f£ < cn .
Y(x) = a

M for £ = °H ’
Y{x) = BH
Y(x) = 8 for £ > Oy *

Because of the term ez(Y')2 in (1.3), two-phase solutions of the form
(1.2) are not members of any function class which renders Se a meaningful
problem. On the other hand, there are solutions of the Euler-Lagrange
which spend most of their time near a

equation (1.4) for £ = o and BH

and which correspond to the two-phase solutions of the unstructured theory.
This raises the question of whether such structured solutions can be relative
minimizers of ({.3). We will show that the answer to this question is no; in

fact, we will prove that all nonconstant solutions = of the problem

2€2Y' =0g(y) - ,
(1.6)

Y'(0) = y'(L) =0
are unstable.
Remark. Our analysis is also appropriate to a fluid in a one-dimensional
chamber acted on by a pressure p = -f. In this instance Y is the specific
volume, W(Y) is the internal energy per unit mass, x € [0,L] labels
material points in a fixed reference configuration with uniform density po,

and the functionals (1.1), (1.3) - multiplied by Po = represent the total

potential energy.

S e
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2. Structured solutions.
It is convenient to change length scales. We let
t = x/¢, Le = L/€¢
; and consider Y(t) as a function of t rather than x; the problem (1.6)

then takes the form
- 2Y = o(Y) - £ ,

(s ) L L]
SRR REX (2.1

with ; = dy/dt, and multiplying (2.1)1 by Y and integrating leads to the

"first integral®

¥ o= e - e(rg) (2.2)

;;

where oY) = Wiy) - £Y , ‘
- (2.3)

Por future use we note also that the associated energy (1.3) is now given by

(Y R, A -

E(Y) = I:e v + e(v)lae . (2.4)
Remark. Equation (2.1), is the equation of motion of an undamped oscillator
of "mass” 2 and "potential energy" =-%(Y); the functional E is the corre-
sponding "Hamiltonian”. ;
We now state two propositions; these allow us to concentrate on '
nonconstant solutions to Problem ge and to f € (0.,0')- The first
proposition follows from the fact that Y = constant solves ge if and only

if o(Y) = f. The second is a direct consequence of the phase portraits for

R * .
£ ¢ (0,,0 )3 for such f there are no trajectories with Yy = 0 at two

distinct places.




Proposition. The complete list of constant solutions of Problem S is as

€
follows:
a, 0<f<a, , ) E
a,r, £=0, ,
*
a,),B, o, <f<o , ? (2.5)
*
A,8, £f=0 ’
L]
8, £>0 . J
Proposition. All nonconstant solutions to Problem S correspond to f in

*
the range (0,,0 ).
*
The graphs of -¢ for f € (0,,0 ) are simply the curves of Figure 3

turned upside~down. In view of the remark, this allows us to easily arrive at
h the phase diagramg shown in Figure 4.
:
< f<g f = < £ < * |
Ou M - OM GM 0 E
Y Y Y ;
Ja e ‘

Figure 4, Phase diagrams

Let us agree to use the term admissible trajectory for a noncongtant

solution vY(t), 0 < ¢t < Ty, of the problem
¥ =o(y) - £ ,

.0 -. - .
Y¥(0) Y(TY) 0




TY € (0,») is then the duration of Y, and the number of times t, not
including t = 0, that Y(t) = 0 is the degree of Y. Problem Se (for
nonconstant solutions) can then be stated as follows: find an admissible
trajectory with duration Le'

This formulation allows us to easily establish the following existence

theorem for Problem Se'

*
Theorem. t £fe (o,,06). Then there is a constant C = C(f) > 0 sguch that

(i) for € > L/C, Problem Se has only constant solutions;

(ii) for € < L/C, Problem S has nonconstant solutions of degree n for

each n = ,2,...,N, where N is the largest integer with N < L/(Ce).
Proof. We will establish this result only for the case

E 4
b 4 ag H
*

the remaining cases oJ < f < OM and oH < f£<o0 are completely analogous.
It is clear from the phase portrait that each admissible trajectory Y

may be labeled by its initial-value Y(0) = YO and its degree N. Further,
each such Y has Yo in either (GM,XH) or (XM,BM), and there is an
obvious one-to-one correspondence between the two resulting classes of
trajectories; this allows us to restrict our attention to trajectories Y
with

Yo e (an,kn) .
Given such a trajectory, ;(t) >0 for 0 < t < ty, where ty = TY/N with
'l'Y the duration and N the degree of Y; further, Y(t1) = Yy, where

Y1 = Y1(Y°)

is the unique solution of

0(Y1) = o(vy)

in the interval (XM,BM) tcf. (2.3) and Figure 3). The duration

'I'Y = T(YO,N) |

-9~
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of such a trajectory is then trivially equal to

TN,
T, =N fo Y(t) av(e) ,

and if we change variable of integration from ¢t to Y, we conclude, with

the aid of (2.3), that
T(YO.N) = NT(YO) v

(2.6)

Y, (Y,)
10 4
/ —

T(y ) =
0 Yo QEEW)

T(Y,) has the limits'
+ - 2
T(a) =+, T ) = '/'"'“u) >0 (2.7)

(the latter being one~half the period of the oscillator defined by (2.1)1
linearized about the rest point XM). Purther the integrand in (2.6) is
bounded away from zero, as is the interval of integration for

Yy e (ah,ku-é). Thus, in view of (2.7)2, C defined by

0
C = xnf{T(Yo)s a, <Y, < Xu}

M
is strictly positive.
Clearly, the equation
T(Yo) = Le {(2.8)
has no solution YO e (aH,AH) when Lb < C, and this implies (i) of the
theorem,
On the other hand, for Le > C we conclude from (2.7); that (2.8) has at
least one solution YO e (aH,AH), as does the more general relation
nT(Yo) = Le

for n=1,2,,..,8 with N the largest integer < Le/c. This yields (ii).

1
ct., e.g., Hale [1969], p. 179; Arnold (1978], Chapter 2, Section 4.

-10=




Remark. Let f = uH and consider the solution of degree ?! sgtarting in

(an,xu). For € gsmall this solution will be close to the heteroclinic orbit

from o, to BH and hence will spend most of its time near Oy

this sense the solution represents the structured analog of the unstructured

and BH’ In

(¢€=0) two~phase solutions of degree 1 which have Oy followed by Bn’
Similarly, the structured solution of degree 2 starting in (aH,AM) is the

analog of the unstructured two-phase solutions of degree 2 which have au

followed by 8" followed by ey Similar assertions apply to the other

nonconstant solutions.




™
3. Stability.
Throughout this section the energy
Le *2
E(Y) = [, 0Y" + w(y) - £ylae
-

is considered as a functional with domain
I ={ye n’(o,Le)z Y>0 on [0,L]} .

In addition, we assume that W is a c functlon,1 so that, by (2.1),,
solutions of §e are c' on [0,L€].

Let Y be such a solution. Then

(1) Y is globally stable if
E(Y) € E(w) for all weT ;
(i1) Y is locally stable if there is a neighborhood Q2 of Y in I such

that

B(Y) < E(w) for all wef ;

(111) v .is unstable if given any norm on the space C.IO,LEI and any
neighborhood 2 of Y in this normed space there igs an w € @ with lower
energy:

E(w) < E(Y) .

Theorem.? All nonconstant solutions of Problem S _ are unstable.

PO

The proof is based on the following lemma, which is well known.

»
Lemma. Let Y be a solution of S_. Suppose there exists an necC (0,L.]

such that }
Le .2 2 !
ry,n = [ Fr2n” + weymflae <o .
“‘g Y L! \m.uble .

1
¢? would suffice provided C™I0,L_) in (1ii) is replaced by °2[°'Le1'

2

Within a slightly different context a similar theorem has been established by
Chafee (1975]. (Cf. Casten and Holland ([1978) and Matano [19791.) We arrived
at our results before discovering the above references.

-12-




|

e Wty S s

oof. Let

v(T) = E(Yy + tn)
for all gufficiently small T. Then a simple calculation, based on (2.1),
shows that

¢'(0) =0, ¢%"(0) =I(Y,N) .
Since I(Y,n) < 0, this tells us that ¢ has a strict reiative maximum at
T = 0; hence
B(Yt) < E(Y), Y=Y+

for all sufficiently small T » 0. Moreover, as

IYT -yl = |1| iInl
(I} arbitrary), every !+l - neighborhood contains functions Yoo T ¥ 0,
and the proof is complete.
Proof of Theorem. Let Y be a nonconstant solution of §€, and let

n(t) = Y(t) + 8B(t)

with

L, -t
B(t) =

(3.1)
€

and § an arbitrary constant. Then, writing I6 = I(v,n),

I = A+ 268 + §%c , (3.2)
where
Lb o 2 *2
A= fo [2Y° + w(y)Y“lae ,
Le e ® *
B = [, [2YB + wr(v)YBlat ,
Cc = I(Y,B) .
By (2.1),,

2¥ = w ()Y .

and hence, using (2.1)2,

-13-




L
As=2 /oe(v Y) at =0 ,
3,.3)

Le .0 ® ”e
B =2 fo (Y 8) at = =2y(0) .

Clearly, Y(0) ¥ 0, for otherwise, by (2.1), Y would be constant; thus
B ¥ 0. We therefore conclude from (3.2) and (3.3) that for some § ¥ 0,
I6 <0 ,

and the proof is complete.
Remark. It is interesting to note that the last theorem is i:Zependent of the
particular form of the stored energy W.

To complete our study we have only to investigate the stability of the
constant solutions (2.5); but this is not difficult.
Proposition. The constant solutions (2.5) have the following properties:
a is globally stable for 0 < f < o, and locally stable for o, < f < 0'; B
is globally stable for o, < f < ® and locally stable for o0, < f < O i

»
A is unstable for o, < f < 0o .

Proof. Let Y be a constant solution. Then for any w e T,

L
Ew) - B = [ S0 - &v) + o) ae

and the global stability of a follows from the fact that ¢ has a global
»
minimum at a for 0 < £ < OH. Also, for oH < £ <0, a is a local minimum

for &; hence there is a & > 0 such that &¥(a) < (1) and T > 0 for all
T with |t-a| < §. Purther
Q= {werl: |uw(t)-al < 8§ for all t e [O,Lel}
is a neighborhood of Y(t) £ a in H‘(O,Le) and E(a) € E(w) for all
w @ 2 hence a is locally stable for o < f < o..

The assertions concerning B are established in a similar manner.




Finally, for o, € £ < o', A is not a local minimum for ¢ and we can
find points T which are arbitrarily close to A and have &(T1) < &(}).
Thus we can find constant functions ® which - in any norm on C.[O,Le] - are
arbitrarily close to Y(t) = A and have E(w) < E(Y). Therefore X is

unstable.

Acknowledgement. We are grateful to Professor J. Hale for pointing out the
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